Too many variants in equilibrium?

A model without location choice.
Focus on firms' entry into the market.

The circular city

Circumference: 1
Consumers uniformly distributed around the circle.
Number of consumers: 1
Linear transportation costs: $t(d)=t d$
Unit demand, gross utility = s
Entry cost: f
Unit cost of production: c
Profit of firm $i: \quad \pi_{i}=\left(p_{i}-c\right) D_{i}-f$, if it enters,

Two-stage game:
Stage 1: Firms decide whether or not to enter. Assume entering firms spread evenly around the circle.

Stage 2: Firms set prices.
If n firms enter at stage 1 , then they locate a distance $1 / n$ apart.

Stage 2: Focus on symmetric equilibrium.
If all other firms set price p, what then should firm i do?
Each firm competes directly only with two other firms: its neighbours on the circle.

At a distance \tilde{x} in each direction is an indifferent consumer:

$$
\begin{aligned}
& p_{i}+t \tilde{x}=p+t\left(\frac{1}{n}-\tilde{x}\right) \\
& \tilde{x}=\frac{1}{2 t}\left(p+\frac{t}{n}-p_{i}\right)
\end{aligned}
$$

Demand facing firm i :

$$
D_{i}\left(p_{i}, p\right)=2 \tilde{x}=\frac{1}{n}+\frac{p-p_{i}}{t}
$$

Firm i's problem:

$$
\begin{gathered}
\max _{p_{i}} \pi_{i}=\left(p_{i}-c\right)\left(\frac{1}{n}+\frac{p-p_{i}}{t}\right)-f \\
\frac{\partial \pi_{i}}{\partial p_{i}}=\left(\frac{1}{n}+\frac{p-p_{i}}{t}\right)-\left(p_{i}-c\right) \frac{1}{t}=0 \\
2 p_{i}-p=c+\frac{t}{n}
\end{gathered}
$$

In a symmetric equilibrium, all prices are equal. $\Rightarrow p_{i}=p$.

$$
p=c+\frac{t}{n}
$$

Stage 1:
How many firms will enter?

$$
\begin{aligned}
& D_{i}=\frac{1}{n} \\
& \pi_{i}=(p-c) \frac{1}{n}-f=\frac{t}{n^{2}}-f \\
& \pi=0 \Rightarrow n=\sqrt{\frac{t}{f}} \\
& \Rightarrow p=c+\frac{t}{\sqrt{t / f}}=c+\sqrt{t f}
\end{aligned}
$$

Condition: Indifferent consumer wants to buy:
$s \geq p+\frac{t}{2 n}=c+\frac{3}{2} \sqrt{t f} \Leftrightarrow f \leq \frac{4}{9 t}(s-c)^{2}$

Exercise 7.3: What if transportation costs are quadratic?
[Exercise 7.4: What if fixed costs are large?]

Social optimum: Balancing transportation and entry costs.
Average transportation cost: $t \frac{1}{2} \tilde{x}=\frac{t}{2} \frac{1}{2 n}=\frac{t}{4 n}$
The social planner's problem:
$\min _{n}\left(n f+\frac{t}{4 n}\right)$
FOC: $f-\frac{t}{4 n^{2}}=0 \Rightarrow n^{*}=\frac{1}{2} \sqrt{\frac{t}{f}}<n^{e}$
Too many firms in equilibrium.
Private motivation for entry: business stealing Social motivation for entry: saving transportation costs
[Exercise: What happens with n^{e} / n^{*} as N (number of consumers) grows?]

Advertising

- informative
- persuasive

Persuasive: shifting consumers’ perferences?
Focus on informative advertising.
Hotelling model, two firms fixed at 0 and 1 , consumers uniformly distributed across [0,1], linear transportation costs $t d$, gross utility s.

A consumer is able to buy from a firm if and only if he has received advertising from it.
φ_{i} - fraction of consumers receiving advertising from firm i
Advertising costs: $A_{i}=A_{i}\left(\varphi_{i}\right)=\frac{a}{2} \varphi_{i}^{2}$

Potential market for firm 1: φ_{1}.
Out of these consumers, a fraction $\left(1-\varphi_{2}\right)$ have not received any advertising from firm 2.
The rest, a fraction φ_{2} out of φ_{1}, know about both firms.
Firm 1's demand:

$$
D_{1}=\varphi_{1}\left[\left(1-\varphi_{2}\right)+\varphi_{2}\left(\frac{1}{2}+\frac{p_{2}-p_{1}}{2 t}\right)\right]
$$

A simultaneous-move game.
Each firm chooses advertising and price.

Firm 1's problem:
$\max _{p_{1}, \varphi_{1}} \pi_{1}=\left(p_{1}-c\right) \varphi_{1}\left[\left(1-\varphi_{2}\right)+\varphi_{2}\left(\frac{1}{2}+\frac{p_{2}-p_{1}}{2 t}\right)\right]-\frac{a}{2} \varphi_{1}^{2}$

Two FOCs for each firm.

$$
\begin{aligned}
& \operatorname{FOC}\left[p_{1}\right]: \varphi_{1}\left[\left(1-\varphi_{2}\right)+\varphi_{2}\left(\frac{1}{2}+\frac{p_{2}-p_{1}}{2 t}\right)\right]-\left(p_{1}-c\right) \frac{\varphi_{1} \varphi_{2}}{2 t}=0 \\
& \operatorname{FOC}\left[\varphi_{1}\right]:\left(p_{1}-c\right)\left[\left(1-\varphi_{2}\right)+\varphi_{2}\left(\frac{1}{2}+\frac{p_{2}-p_{1}}{2 t}\right)\right]-a \varphi_{1}=0 \\
& \Rightarrow \quad p_{1}=\frac{1}{2}\left(p_{2}+c-t\right)+\frac{t}{\varphi_{2}} \\
& \varphi_{1}=\frac{1}{a}\left(p_{1}-c\right)\left[\left(1-\varphi_{2}\right)+\varphi_{2}\left(\frac{1}{2}+\frac{p_{2}-p_{1}}{2 t}\right)\right]
\end{aligned}
$$

Firms are identical \Rightarrow Symmetric equilibrium

$$
\begin{aligned}
& p=\frac{1}{2}(p+c-t)+\frac{t}{\varphi} \\
& \Rightarrow p=c+t\left(\frac{2}{\varphi}-1\right) \\
& \varphi=\frac{1}{a}(p-c)\left[(1-\varphi)+\varphi \frac{1}{2}\right] \\
& \varphi=\frac{1}{a} t\left(\frac{2}{\varphi}-1\right)\left(1-\frac{\varphi}{2}\right) \\
& \Rightarrow \varphi=\frac{2}{1+\sqrt{\frac{2 a}{t}}}
\end{aligned}
$$

Condition: $\frac{a}{t} \geq \frac{1}{2}$

$$
\Rightarrow p=c+\sqrt{2 a t}
$$

Condition: $s \geq c+t+\sqrt{2 a t}(\geq c+2 t)$

- $\frac{\partial \varphi}{\partial a}<0, \quad \frac{\partial p}{\partial a}>0$

Firms' profit:

$$
\pi=\frac{2 a}{\left(1+\sqrt{\frac{2 a}{t}}\right)^{2}}
$$

- $\frac{\partial \pi}{\partial t}>0 ; \quad \frac{\partial \pi}{\partial a}>0$!

An increase in advertising costs increases firms' profits.
Two effects of an increase in a on profits:
A direct, negative effect.
An indirect, positive effect: $a \uparrow \rightarrow \varphi \downarrow \rightarrow p \uparrow$
Firms profit collectively from more expensive advertising.
Crucial assumption: convex advertising costs.
What about the market for advertising?
[Kind, Nilssen \& Sørgard, 2007, 2009]

Social optimum

Average transportation costs

among fully informed consumers: $t / 4$. among partially informed consumers: $t / 2$.

The social planner's problem:

$$
\begin{gathered}
\max _{\varphi} \varphi^{2}\left(s-c-\frac{t}{4}\right)+2 \varphi(1-\varphi)\left(s-c-\frac{t}{2}\right)-2 \frac{a}{2} \varphi^{2} \\
\varphi^{*}=\frac{2(s-c)-t}{2(s-c)+2 a-\frac{3}{2} t}
\end{gathered}
$$

[Condition: $t \leq 2(s-c)$]
Special cases:
(i) $\frac{a}{t} \rightarrow \frac{1}{2}$:

$$
\begin{aligned}
& \varphi^{e} \rightarrow 1 \\
& \varphi^{*} \rightarrow 1-\frac{t}{4(s-c)-t}<1
\end{aligned}
$$

Too much advertising in equilibrium
(ii) $\frac{a}{t} \rightarrow \infty$:

$$
\begin{aligned}
& \varphi^{e} \rightarrow 0 \\
& \varphi^{*} \rightarrow \frac{1}{1+\frac{a}{s-c}}>0
\end{aligned}
$$

Too little advertising in equilibrium

Vertical product differentiation

Quality competition

Consumers agree on what is the best product variant. But they differ in their willingness to pay for quality.
s - quality
θ - measure of a consumer's taste for quality.
If a consumer of type θ buys a product of quality s at price p, her net utility is:

$$
U=\theta s-p
$$

$F(\theta)$ - cumulative distribution function of consumer type

$$
F\left(\theta^{\prime}\right) \text { - fraction of consumers with type } \theta \leq \theta^{\prime} \text {. }
$$

Unit demand: If $\theta s-p \geq 0$, then a consumer of type θ buys one unit of the good.

One firm:

At price p, its demand is $D(p)=1-F\left(\frac{p}{s}\right)$.

Two firms:

Suppose $s_{1}<s_{2}, p_{1}<p_{2}$. The indifferent consumer:

$$
\begin{gathered}
\tilde{\theta} s_{1}-p_{1}=\tilde{\theta} s_{2}-p_{2} \\
\tilde{\theta}=\frac{p_{2}-p_{1}}{s_{2}-s_{1}}
\end{gathered}
$$

Product 2 quality dominates product 1 if:

$$
\tilde{\theta}<\frac{p_{1}}{s_{1}} \Leftrightarrow \frac{p_{2}}{s_{2}}<\frac{p_{1}}{s_{1}}
$$

Otherwise $\left(\frac{p_{2}}{s_{2}} \geq \frac{p_{1}}{s_{1}}\right)$, demand is:

$$
\begin{aligned}
& D_{1}\left(p_{1}, p_{2}\right)=F\left(\frac{p_{2}-p_{1}}{s_{2}-s_{1}}\right)-F\left(\frac{p_{1}}{s_{1}}\right) \\
& D_{2}\left(p_{1}, p_{2}\right)=1-F\left(\frac{p_{2}-p_{1}}{s_{2}-s_{1}}\right)
\end{aligned}
$$

Assume:
Consumers uniformly distributed across $[\underline{\theta}, \bar{\theta}]$
Consumers sufficiently different:

$$
\bar{\theta}>2 \underline{\theta}
$$

(avoiding quality dominance in equilibrium)
Firm 2 is the high-quality producer: $s_{2}>s_{1}$.
Production costs independent of quality: c

Equilibrium in prices

$\tilde{\theta}=\frac{p_{2}-p_{1}}{s_{2}-s_{1}}$
Firm 1's profit: $\pi_{1}=\left(p_{1}-c\right)\left(\frac{p_{2}-p_{1}}{s_{2}-s_{1}}-\max \left[\underline{\theta}, \frac{p_{1}}{s_{1}}\right]\right)$
Best response of firm 1:

$$
p_{1}=\left\{\begin{array}{l}
\frac{1}{2}\left[c+\frac{s_{1}}{s_{2}} p_{2}\right], \text { if } p_{2}>c+\underline{\theta}\left(s_{1}+s_{2}\right) \\
\frac{1}{2}\left[c+p_{2}-\underline{\theta}\left(s_{2}-s_{1}\right)\right], \text { if } c+\underline{\theta}\left(s_{1}+s_{2}\right) \geq p_{2} \geq c+\underline{\theta}\left(s_{2}-s_{1}\right) \\
c, \text { if } p_{2}<c+\underline{\theta}\left(s_{2}-s_{1}\right)
\end{array}\right.
$$

Firm 2's profit: $\pi_{2}=\left(p_{2}-c\right)\left(\bar{\theta}-\frac{p_{2}-p_{1}}{s_{2}-s_{1}}\right)$
Best response of firm 2:

$$
p_{2}=\frac{1}{2}\left[c+p_{1}+\bar{\theta}\left(s_{2}-s_{1}\right)\right]
$$

Equilibrium prices:

$$
\begin{aligned}
& p_{1}=c+\frac{1}{3}(\bar{\theta}-2 \underline{\theta})\left(s_{2}-s_{1}\right) \\
& p_{2}=c+\frac{1}{3}(2 \bar{\theta}-\underline{\theta})\left(s_{2}-s_{1}\right)
\end{aligned}
$$

Condition for the market being covered, $\underline{\theta} \geq \frac{p_{1}}{s_{1}}$:

$$
c \leq \frac{1}{3}\left[\underline{\theta}\left(2 s_{1}+s_{2}\right)-(\bar{\theta}-\underline{\theta})\left(s_{2}-s_{1}\right)\right]
$$

- The high-quality firm sets the higher price:

$$
p_{2}-p_{1}=\frac{1}{3}(\bar{\theta}+\underline{\theta})\left(s_{2}-s_{1}\right)>0
$$

- The high-quality firm has the higher demand:

$$
\begin{aligned}
& \tilde{\theta}=\frac{p_{2}-p_{1}}{s_{2}-s_{1}}=\frac{1}{3}(\bar{\theta}+\underline{\theta})<\frac{1}{2}(\bar{\theta}+\underline{\theta}) \\
& D_{1}=\tilde{\theta}-\underline{\theta}=\frac{1}{3}(\bar{\theta}-2 \underline{\theta}) \\
& D_{2}=\bar{\theta}-\tilde{\theta}=\frac{1}{3}(2 \bar{\theta}-\underline{\theta})
\end{aligned}
$$

- The high-quality firm has the higher profit:

$$
\begin{aligned}
& \pi_{1}\left(s_{1}, s_{2}\right)=\left(p_{1}-c\right) D_{1}=\frac{1}{9}(\bar{\theta}-2 \underline{\theta})^{2}\left(s_{2}-s_{1}\right) \\
& \pi_{2}\left(s_{1}, s_{2}\right)=\left(p_{2}-c\right) D_{2}=\frac{1}{9}(2 \bar{\theta}-\underline{\theta})^{2}\left(s_{2}-s_{1}\right)
\end{aligned}
$$

- Firms' profits are increasing in the quality difference

Two-stage game

Stage 1: Firms choose qualities
Stage 2: Firms choose prices
Stage 1 - feasible quality range: $[s, \bar{s}$]
Assume: $c \leq \frac{1}{3}[\underline{\theta}(2 \underline{s}+\bar{s})-(\bar{\theta}-\underline{\theta})(\bar{s}-\underline{s})]$

In equilibrium: $s_{1}=\underline{s}, s_{2}=\bar{s}$ (or the opposite).

- Asymmetric equilibrium
- Maximum differentiation

What if ...

- $c>\frac{1}{3}[\underline{\theta}(2 \underline{s}+\bar{s})-(\bar{\theta}-\underline{\theta})(\bar{s}-\underline{s})]$
- the low-quality firm will choose a quality above s.
- $\bar{\theta}<2 \underline{\theta}$
- only one firm active in the market:

$$
\begin{aligned}
& p_{1}=c, D_{1}=0, \pi_{1}=0 \\
& p_{2}=c+\frac{1}{2} \bar{\theta}(\bar{s}-\underline{s}), D_{2}=1, \pi_{2}=\frac{1}{2} \bar{\theta}(\bar{s}-\underline{s})
\end{aligned}
$$

- natural monopoly: low consumer heterogeneity makes price competition too intense for the lowquality firm

Natural duopoly for a range of consumer heterogeneity above $\bar{\theta}>2 \underline{\theta}$.

Vertical differentiation: the number of firms determined by consumer heterogeneity.

Horizontal differentiation: the number of firms determined by market size.

